

User Guide

Introduction

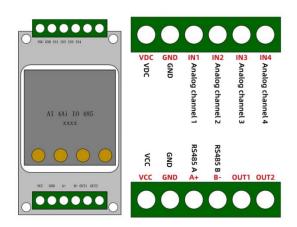
4 ~ 20mA to RS485 converter is an industrial standard analog acquisition product, small and portable. It can collect up to four channels 4 ~ 20mA analog signals, and convert them to the standard ModBus-RTU communication protocol with RS485 port, so as to be monitored by GS1-S series devices. It can also be directly connected to a PLC, industrial control instrument, configuration screen or configuration software. Acquisition accuracy is 12-bit resolution, 0.1% accuracy. It can be widely used in industrial sites, distribution cabinets and other places requiring analog signal acquisition.

Applications

Widely used in industrial sites, power distribution cabinets and other applications that need to collect analog signals.

Features

- DC 9 ~ 36V Power supply with anti-reverse connection, over-voltage and over-current protection
- 4 channels of 4 ~ 20mA current inputs
- 12-bit resolution, 0.1% accuracy
- Supporting Modbus-RTU protocol
- RS485 communication interface with lightning protection and static protection


Specifications

Specification						
Model		UB-AI-N1				
Power Supply		DC 9 ~ 36V				
	Collected Signal	4 ~ 20mA				
Analog	Number of Interfaces	4 channels single terminal				
Interface	AD Conversion Resolution	12 bit				
	Accuracy	0.1%				
	Max Current	269mA (@12V)				
Working Environment		-40 ~ 85°C, 0 ~ 95%RH				
Connector		Audio				
Size / Cable length		82*50*32mm /3m				
Communication Protocol		RS485 Modbus RTU Protocol				
RS485 Address		0xDA				
Baud Rate		1200 bit/s, 2400 bit/s, 4800 bit/s, 9600 bit/s (default), 19200 bit/s				

Instruction

Users connect the 4 ~ 20mA analog sensor to the interface on the top according to the line sequence, and sets the acquisition frequency and sensor display settings through UbiBot console. At this time, the uploaded data is the current value. Input the upper limit and lower limit of the 4 ~ 20mA analog sensor range through the platform-level calibration function on the console, and the platform will automatically calculate and convert the current value to the actual value.

When this converter is used with our company's GS1-S series products, please connect GS1-S the device with DC 12V power supply. At this time, the output voltage of the VDC interface is 12V, please pay attention to the voltage when connecting the analog sensor externally.

6 slots on the top							
VDC	Power output positive	IN1	Analog channel	IN3	Analog channel		
GND	Power output negative	IN2	Analog channel 2	IN4	Analog channel		

6 slots at the bottom							
VCC	Power output positive A+ RS485 A						
GND	Power output negative	B+	RS485 B				

Example:

- $4 \sim 20$ mA to RS485 converter is connected to an atmospheric pressure sensor to obtain atmospheric pressure and temperature values. Atmospheric pressure range: $0 \sim 120$ kPa; temperature range: $-40 \sim 80$ °C.
- ① Connect the atmospheric pressure sensor to the top, using analog channel 1 and channel 2, with

the following sequence

4 ~ 20mA to RS485 converter	Atmospheric pressure sensor			
VDC	Power supply positive			
GND	Negative power supply, negative temperature signal, negative air pressure signal			
IN1	Positive temperature signal			
IN2	Positive power supply			

② Set the acquisition frequency via the console, [Settings] - [Data Management]. Set the corresponding channel in the field of [Sensor Display Settings].

③ Choose [Calibration Sensors] - [Platform-level Calibration], and click edit. According to the range, input the upper and lower range limits, and the platform will automatically calculate.

Wiring Instruction

Communication Protocols

1. Communication Basic Parameters

Communication Basic Parameter							
Coding System	8-bit binary						
Data Bit	8 bits						
Parity Checking Bit	none						
Stop Bit	1 bit						
Error Checking	CRC Check						
Baud Rate	1200 bit/s, 2400 bit/s, 4800 bit/s, 9600 bit/s (default), 19200 bit/s						

2. Data Frame Format

The Modbus-RTU communication protocol is used in the following format:

- Initial tructure ≥ 4 bytes in time.
- Address code: 1 byte, default 0xDA.
- Function code: 1 byte, support function code 0x03 (read only) and 0x06 (read / write).
- Data area: N bytes, 16-bit data, high byte comes first.

- Error check: 16-bit CRC code.
- End structure \geq 4 bytes of time.

Request											
Slave Address Function Co		Code	Register Address		No. of Registers		CRC L	CRC LSB		CRC MSB	
1 byte 1 byt		1 byte	<u>,</u>	2 bytes		2 bytes		1 byte		1 byte	
Response											
Slave Address	Fur	nction Code	No. of Bytes		Content 1	Content 1		***	Content n		CRC
1 byte		1 byte	1 byte		2 bytes	2 bytes		***	2 byt	es	2 bytes

3. Register Address

Register Address									
Address	Content	Register Length	Function Code	Description of Definitions					
0x0000	Channel 1 current value	2	03	Floating (IEEE 754 standard)					
0x0002	Channel 2 current value	2	03	Floating (IEEE 754 standard)					
0x0004	Channel 3 current value	2	03	Floating (IEEE 754 standard)					
0x0006	Channel 4 current value	2	03	Floating (IEEE 754 standard)					
0x07D1 Baud Rate		1	03	0:2400, 1:4800, 2:9600, 3:19200, 4:38400, 5:57600, 6:115200, 7:1200					